U. Zannier ON THE HILBERT IRREDUCIBILITY THEOREM
نویسنده
چکیده
We discuss the Hilbert Irreducibility Theorem, presenting briefly a new approach which leads to novel conclusions, especially in the context of algebraic groups. After a short survey of the issues and of the known theory, we shall illustrate the main principles and mention some new results; in particular, we shall state a toric analogue of Bertini’s Theorem and a lifting theorem for rational points on a cover of a power of an elliptic curve.
منابع مشابه
Effective Hilbert Irreducibility
I Abstract n this paper we prove by entirely elementary means a very effective version of the Hilbert Irreducibility-n Theorem. We then apply our theorem to construct a probabilistic irreducibility test for sparse multivariate poly omials over arbitrary perfect fields. For the usual coefficient fields the test runs in polynomial time in the input K size.
متن کاملHilbert ’ s irreducibility theorem , and integral points of bounded degree on curves par Aaron LEVIN
We study the problem of constructing and enumerating, for any integers m,n > 1, number fields of degree n whose ideal class groups have “large” m-rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.
متن کاملOn the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کاملSome Remarks on the Jacobian Conjecture and Connections with Hilbert’s Irreducibility Theorem
We have two main results. 1. Let P : Kn → Kn be a polynomial map with constant nonzero Jacobian, where K is any extension of Q. Then, P has a polynomial inverse if and only if the range of P contains a cartesian product of n universal Hilbert sets. 2. Let P : K → K be a polynomial map with constant nonzero Jacobian, where K is an algebraic number field. Then, P is invertible for “almost all” ra...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کامل